Infinite Products of Cyclotomic Polynomials
نویسندگان
چکیده
We study analytic properties of certain infinite products of cyclotomic polynomials that generalize some introduced by Mahler. We characterize those that have the unit circle as a natural boundary and use associated Dirichlet series to obtain their asymptotic behavior near roots of unity.
منابع مشابه
Flat Cyclotomic Polynomials of Order Four and Higher
In this article we prove a result about sets of coefficients of cyclotomic polynomials. We then give corollaries related to flat cyclotomic polynomials and establish the first known infinite family of flat cyclotomic polynomials of order four. We end with some questions related to flat cyclotomic polynomials of order four and five.
متن کاملOn links with cyclotomic Jones polynomials
We show that if {Ln} is any infinite sequence of links with twist number τ (Ln) and with cyclotomic Jones polynomials of increasing span, then lim sup τ (Ln) = ∞ . This implies that any infinite sequence of prime alternating links with cyclotomic Jones polynomials must have unbounded hyperbolic volume. The main tool is the multivariable twist–bracket polynomial, which generalizes the Kauffman b...
متن کاملTernary Cyclotomic Polynomials with an Optimally Large Set of Coefficients
Ternary cyclotomic polynomials are polynomials of the form Φpqr(z) = ∏ ρ(z − ρ), where p < q < r are odd primes and the product is taken over all primitive pqr-th roots of unity ρ. We show that for every p there exists an infinite family of polynomials Φpqr such that the set of coefficients of each of these polynomials coincides with the set of integers in the interval [−(p − 1)/2, (p + 1)/2]. ...
متن کاملHarmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials
The computation of Feynman integrals in massive higher order perturbative calculations in renormalizable Quantum Field Theories requires extensions of multiply nested harmonic sums, which can be generated as real representations by Mellin transforms of Poincaré– iterated integrals including denominators of higher cyclotomic polynomials. We derive the cyclotomic harmonic polylogarithms and harmo...
متن کاملFactors and Irreducibility of Generalized Stern Polynomials
We investigate an infinite class of polynomial sequences at(n; z) with integer parameter t 1, which reduce to the well-known Stern (diatomic) sequence when z = 1 and are (0, 1)-polynomials when t 2. These sequences are related to the theory of hyperbinary expansions. The main purpose of this paper is to obtain various irreducibility and factorization results, most of which involve cyclotomic po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014